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Received 11 April 1988 

Abstract. Finite-dimensional quantum models with both boson and fermion degrees of 
freedom, and which have a gauge invariance, are studied here as simple versions of gauge 
invariant quantum field theories. The configuration space of these finite-dimensional 
models has the structure of a principal fibre bundle and has defined on it a metric which 
is invariant under the action of the bundle or gauge group. When the gauge-dependent 
degrees of freedom are removed, thereby defining the quantum models on the base of the 
principal fibre bundle, extra operator ordering terms arise. By making use of dimensional 
reduction methods in removing the gauge dependence, expressions are obtained here for 
the operator ordering terms which show clearly their dependence on the geometry of the 
principal fibre bundle structure. 

1. Introduction 

The presence of gauge invariance in any Lagrangian means that the Lagrangian is 
singular, i.e. it has redundant degrees of freedom (see [l] and references therein). In 
order to proceed with the quantisation of the Lagrangian these redundant degrees of 
freedom must be removed. In gauge invariant field theories, for example Yang-Mills 
field theory, when the gauge dependence is removed from the configuration space the 
resulting space of gauge orbits is known to be equipped with a curved Riemannian 
geometry [2-61. Hence, in order to consider quantum mechanics on such a curved 
configuration space (even though infinite dimensional in the case of a field theory) a 
choice has to be made for the ordering of operators in the Hamiltonian operator. This 
operator ordering problem for Yang-Mills field theory was considered by Christ and 
Lee [7] and Gawedzki [8] where extra operator ordering terms are found. However, 
their approach does not fully bring out and identify the underlying geometric features 
that are present due to the gauge invariance. The two main geometric structures on 
the configuration space of, for example, Yang-Mills field theory are first that of a 
principal fibre bundle and second that of a Riemannian manifold where the metric is 
invariant under the action of the gauge group [3]. It is not necessary, of course, to 
have infinite dimensionality, i.e. a field theory, in order that the above geometric 
structures occur. There are examples of finite-dimensional configuration spaces which 
have these structures. In this paper, in order to concentrate on the geometric point of 
view, we consider the quantum mechanics of bosons and fermions on finite-dimensional 
configuration spaces where there is a gauge invariance, i.e. we have a principal fibre 
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350 P Houston 

bundle and a gauge invariant Riemannian metric. We will identify the operator ordering 
terms with reference to features associated with these geometric structures. 

As our motivation originates from gauge invariant field theory, we now briefly 
consider the example of a single SU(2) Yang-Mills field and identify there the structures 
we are interested in. The configuration space is the infinite-dimensional space of gauge 
potentials A = A(x), where each component is valued in C2x2 and satisfies A: = Ai and 
tr(Ai) = 0. The classical dynamical Lagrangian, in the A' = 0 gauge, is given by 

L ( t ) = ' [  2 d,x{tr($.$)-V(A)) 

together with the Gauss law 

{ i (  2) + [Ai, $11 = 0. 

Here, the potential V(A) is the space integral of the trace of the magnetic field squared. 
The infinite-dimensional gauge group is { U  = U(x)}, where U(x) is a unitary uni- 
modular element of This gauge group acts on the configuration space as follows: 

au 
ax 

Ai(x) + A ~ ( x )  = U-'(x)Ai(x) U(X)+ U-'(X) 7 (x) (1.3) 

and leaves equations (1.1) and (1.2) invariant. The configuration space together with 
the group action of (1.3) essentially gives the structure of a principal fibre bundle?. 
We have also a metric defined implicitly on the configuration space, namely the 
Euclidean metric, due to the form of the kinetic energy term in L ( t ) .  This infinite- 
dimensional metric is invariant under the gauge group action. Moreover, as can be 
seen directly, the transformation (1.3) is contained within the Euclidean group action 
on the configuration space. The first term of A" is a rotation about the origin of the 
configuration space and the second term of A" is a translation. 

In considering finite-dimensional models to illustrate the geometric situation per- 
taining to gauge field theories, we take two points of view. (Of course, by restricting 
to a finite-dimensional configuration space, we are putting aside questions of renormali- 
sation and Lorentz covariance which are present in gauge field theory.) For the first 
case (case A) we require that the finite-dimensional configuration space be equipped 
with the Euclidean metric and that the gauge group action on the configuration space 
lie non-trivially within both the rotation and translation parts of the Euclidean group 
action. Because of finite dimensionality, examples fulfilling the conditions for case A 
are somewhat limited. Indeed, since the translation group is Abelian, it is clear that 
the only gauge groups that will be of interest will also be Abelian. Thus, for a typical 
example covering case A we take the configuration space to be three-dimensional 
Euclidean space and the gauge group to be U( 1). We consider this example in section 
2. Case A is the direct finite-dimensional analogy of the situation in Yang-Mills field 
theory, but too few examples are possible to allow general conclusions to be drawn. 
Hence, for the second case (case B) we adopt a more general stance. We take the 
configuration space to be a finite-dimensional Riemannian manifold with a metric 
which is invariant under the free action of a finite-dimensional Lie group G.  We 
consider this case in section 3. 

t For a principal fibre bundle the group is required to act freely. For (1 .3)  to give a free group action some 
restrictions are needed on {A(x)} (see [3]). 
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To consider the quantum mechanics of any gauge invariant or singular Lagrangian 
we must use Dirac’s method of constraints (see [l]). In this method we are given a 
closed operator algebra consisting of the Hamiltonian operator and the constraint 
operators. The quantum mechanics is then defined by the Hamiltonian operator but 
as operating on wavefunctions which are annihilated by the constraint operators. 
Proceeding further, by transforming the Hamiltonain so that it operates on wavefunc- 
tions of the space of gauge orbits we can read off the extra operator ordering terms. 
The ordering of operators of the transformed final Hamiltonian will depend, of course, 
on the choice of the ordering of operators in the original Hamiltonian, i.e. prior to 
the application of the constraint operators. For case A the original configuration space 
is flat Euclidean space. Thus we make the canonical choice of - i times the Euclidean 
Laplacian for the kinetic energy term of the original Hamiltonian. For case B the 
original configuration space is already curved. Here, we make the natural geometric 
operator ordering choice that the kinetic energy term of the original Hamiltonian is 
- 4  times the Laplacian on the original configuration space. 

We study these operator ordering terms with reference to the geometric features 
associated with a principal fibre bundle on which is defined an invariant Riemannian 
metric. These features are the connection form and the Riemannian structures of the 
base and the fibres of the principal fibre bundle. The geometric situation that we have 
here has also occurred in the context of the dimensional reduction of Kaluza-Klein-type 
theories (see [9,10] and the review [l l]) .  Thus in the geometric discussion we have 
found it convenient to take our notation and approach from there. 

Finally, section 4 contains the concluding remarks. 

2. A three-dimensional model with a one-dimensional gauge invariance 

In this section we consider a three-dimensional example typifying most directly the 
geometrical situation in gauge invariant field theories, i.e. the case A referred to in the 
introduction. We will consider first the physics point of view in approaching a 
boson-only model and a boson-plus-fermion model. Then we will adopt a geometric 
point of view in looking at these models. 

The Lagrangian for a boson particle moving in three-dimensional Euclidean space, 
which is periodic with period 27rp in the z direction, we take to be 

Here, r and 8 are the polar variables to x and y ,  and V is an arbitrary function of r 
and e - z / p ;  the variable q plays the same role here as A’ does in Yang-Mills field 
theory and the dot denotes time derivative. The Lagrangian is invariant under the 
gauge transformation 

c o s a  -s ina 
(2 .2a )  

4 ’ 4 + & .  ( 2 . 2 b )  

In the A’= 0 (i.e. 4 = 0) gauge the Lagrangian becomes 

(2 .3)  
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but in addition we have the Gauss-law constraint arising from the equation of motion 
for the q variable 

xg - yx + p i  = 0. (2.4) 

The similarity of this three-dimensional model with Yang-Mills field theory can be 
seen by comparing the Lagrangians of equations (1.1) and (2.3) and the Gauss laws 
(1.2) and (2.4). Furthermore, the three-dimensional configuration space has the 
Euclidean metric defined on it due to the form of the kinetic energy term in equation 
(2.3) and the remaining time-independent gauge transformation (2.2a), which leaves 
the A’= 0 gauge Lagrangian (2.3) invariant, lies in both the rotation and translation 
parts of the Euclidean group. 

The momentum conjugate to x i sp  = i using equation (2.3). Hence, the Hamiltonian 
is given by 

( 2 . 5 )  

This is subject to the Gauss-law constraint (2.4) which in terms of the momenta becomes 

H -1 2 
B - 2 p  + v ( r ,  e - z / p ) .  

XPy - YPX + PPZ = 0. (2.6) 

In order to quantise the constrained system (2.5) and (2.6) we let p become ( l / i ) V t  
and make the canonical operator ordering choice for the Hamiltonian of a particle 
moving in Euclidean space, i.e. 

AB= -fv2+ v(r, e - z i p ) .  (2.7) 

According to Dirac’s method [ 11 the constraint that is imposed on the wavefunction is 

( xa /ay -ya /ax+pa /az )$  =o .  (2.8) 

The quantum mechanics of the boson model is defined by the Hamiltonian operator 
(2.7) acting on wavefunctions which satisfy equation (2.8). 

In using the coordinates (x, y, z ) ,  the similarity of our model with Yang-Mills field 
theory is clearly displayed. However, it will be more convenient for future calculations 
to change to cylindrical coordinates ( r ,  8 , ~ ) .  Thus in terms of these coordinates the 
original Lagrangian becomes 

L’ -1 - 2{ i2+  r2(B - q)?+ ( z  -pq l2 }  - V ( r ,  e - z / p )  (2.17 

and the gauge transformation ( 2 . 2 ~ )  becomes 

r + r  

e + e + a  (2.2a ’) 

z + z + p a .  

L -1 - 2( i2+  r 2 d 2 +  2’) - V ( r ,  e - z / p )  
In the A’=O gauge the Lagrangian and Gauss law are as follows: 

(2.3’) 

(2.4’) rd + pi = 0. 

t Because the z variable has the topological structure of a circle, we have a one-parameter family of 
inequivalent choices for p : ,  namely ( l / i ) J /dz  + 6 with 0 s  S < 1 / p .  The choice S = 0 is taken for convenience 
as the end result is not affected by i t .  
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The momenta conjugate to (r, 0, z) are ( pr = i, p e  = r2d, p z  = 2 ) .  The Hamiltonian and 
Gauss law are given by 

H B -1 - 2 (  ~f + p i /  r2 +pl) + Vir, e - Z / P  

P 6  + ppz = 0. 

(2.5') 

(2.6') 

In quantising, ( p I ,  PO, p z )  become (l / i)(a/ar,  a/ae, a / a z ) .  In the Hamiltonian operator 
(2.7) y e  have only to write the Laplacian V2 in cylindrical coordinates. However, we 
give HB in the alternative form 

+ v(r ,  e - Z / P M T $ ~ ]  

where the Gauss-law constraint on the wavefunctions now becomes 

a* a* -+p- -0 .  
ae az 

(2.7') 

(2.8') 

Equation (2.7') will give a more suitable formula for AB than (2.7) for later use. 
We now consider a modification of the Lagrangian LL to produce a gauge invariant 

model of bosons and fermions which represents a three-dimensional version of a gauge 
field theory with fermions. For the modified Lagrangian we write (see [12]) 

where p is a constant 

= (3 
(2.10) 

and where ' denotes the complex conjugate transpose. Here 6, are the fermion variables. 
The similarity in form of the second term of equation (2.9) to that of the gauge 
potential-fermion field coupling term of a field theory is self-evident. The Lagrangian 
L' is invariant under the gauge transformation (2.2) together with 

5 + ( e';2 eio,2) 5. (2.11) 

In the A'= 0 (i.e. q = 0) gauge the Lagrangian and Gauss-law constraint are 

L = L B + s t [ i  d / d t - + p ( x o , + y ~ 2 ) ] 5  (2.12) 

r 2 0 + p i + f ~ ' a 3 ~ = ~ .  (2.13) 

The quantised Hamiltonian associated with the Lagrangian of equation (2.12) may 

A=A,+A, (2.14) 

be written as 
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where the boson Hamiltonian operator A, is already given by equation (2.7) or (2.7'). 
The fermion part of f i  is 

(2.15) A, = &CLjt(XCrl + y o 2 ) {  

where 

(2.16) 

and { I , ,  1 2 ,  I , ,  1,) satisfy the four-dimensional Clifford algebra 

l,lj + 41, = a,,. (2.17) 

In order to obtain a matrix representation of this Clifford algebra we need to take I , ,  
1 2 ,  I , ,  l4 (and I,, g2) as elements of C4',. A particular matrix representation is given by 

0 0 1 0  0 0 0 0  .=lo A 0 0 0 0  0 0 o) .=[ : : : :j 
0 1 0 0  - 1 0 0 0  

(2.18) 

and &, j :  are obtainled by taking their complex conjugate transpose. With respect to 
this representation, HF can be written as the 4 x 4 matrix 

o e" 

(2.19) 

where 0 denotes the 2 x 2 matrix of zeros. It follows, of course, that in this matrix 
representation f i  operates on wavefunctions $ which are valued in C4. The Gauss-law 
constraint on these wavefunctions is 

($+pf+ i  {.,,{)* = ae a ( - + p - - -  az a 2 i ( u 3  o ")*=o. o (2.20) 

Thus the quantum mechanics of the boson-fermion model is defined by the Hamiltonian 
fiy given by equations (2.14), (2.7) or (2.7'), and (2.19) as acting on C4-values wavefunc- 
tions satisfying equation (2.20). 

Having set up the quantum models, we now consider the underlying geometry of 
the configuration space of these models (see [13]). Because of periodicity in the z 
direction, the configuration space P is R2 x SI. Let ( r ,  8, z )  be the (cylindrical) coordin- 
ates of a point in P, then an element e'" of the gauge group U ( l )  acts freely (i.e. 
without fixed points) on P as follows: 

el" 
P 3 ( r , @ , z ) +  ( r , O + a , z + p a ) ~ P .  (2.21) 

(Alternatively, if we were to use Cartesian coordinates on P the U(1) action would be 
as given by equation (2.2a).) The group action (2.21) defines the structure of a principal 
fibre bundle on P, the fibres being given by {( r, 6 + a, z + pa)IO C a < 277). Identifying 
all points in P which lie on the same fibre we obtain M = R2 which is the base of the 
principal fibre bundle. The bundle projection P+ M is then given by 

P 3 ( r , e , z ) ~ ( p , ~ ) = ( r , e - z l p ) E M  (2.22) 
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where ( p ,  4)  are the polar coordinates of a point in M. The Euclidean metric ds; is 
defined on P 

(2.23) 

The tangent space to P, Yp, is spanned by {alar, alae, alaz}. We define a vector 

ds; = dx2+ dy2+ dz2 = dr’+ r2 d e 2 +  dz2 

and the group action in either form (2.2a) or (2.21) leaves ds: invariant. 

field E which is tangent to the fibres as follows: 

(2.24) 

The vertical subspace of Yp, Sr, is spanned by { E  =a/ae+pa/az}. Using ds; we can 
now define a metric, d s i ,  on each fibre as follows: 

ds:( E ,  E )  = r2 + p2.  (2.25) 

Therefore the fibre above the point (p, 4)  of M has the metric 

ds:= ( p 2 + P 2 )  d a 2  (2.26) 

where a ( O G  a < 27r) represents the coordinates of a point on the fibre. (Hence, the 
length of the fibre above (p, 4)  is 27r(p2+p2)”2.) 

The metric ds; also allows us to define a horizontal subspace of Y p  which is 
orthogonal to Sr denoted X.  We take X to be spanned by 

- a ---LL}, i a  { ar ’ r ’ae  p az 

Thus Yp = Sr@ 2. Furthermore, because ds; is invariant under the U( 1) bundle action, 
the above construction of X naturally defines a U( 1) connection on the principal fibre 
bundle. The associated connection 1-form w is determined by 

W ( E )  = 1 w ( X ) = O .  (2.27) 

Applying these conditions w is computed to be 

1 
w=- ( r 2 d e + p  dz). 

r 2 + p 2  (2.28) 

In order to express w in a more familiar format we need to consider a local section 
of the bundle, i.e. a local map M +  P. In fact, we consider a family of such sections 
labelled by the function u = u ( p ,  4)  and given by 

r = p  @ = 4 + d p ,  4)  z = P d P ,  4). (2.29) 

Using the section (2.29) we have 

(2.30) 
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Therefore w can now be written as a 1-form on M as 

w = a:’ dp + d 4  
where 

We note that the field strength (or bundle curvature) is computed to be 

2pp2 d p d 4  
(P’ + p 2 ) 2  

9 = d w =  

(2.31) 

(2.32) 

(2.33) 

and that the total flux (or first Chern class) is 

The tangent space to M, .FM is spanned by {alap, a /a4) .  For any function f which 
is constant on the fibres of P i.e. f ( p ,  4)  = f(r, 0 - z l p )  we have that aflap =af/ar, 
af/a4 = af/a0. Thus we can lift a l a 4  and ala4 in YM to a l a r +  yp€ and a l a e +  yI& 
in Tp, respectively. As yp and yI are arbitrary, these lifts are not unique. If we require 
these lifts to be in 2, we obtain the unique horizontal lifts e, and e,  of a/ap and 8/84, 
respectively. Fixing yp and yd by requiring w ( e p )  = w ( e , )  = 0, from equation (2.27) 
we have 

ep = a l a r  e,=a/a0- ( - r2 cp.)’* 

This horizontal lift of 9, to Tp allows us to define 
metric ds; . Using 

ds;( e,, e,)  = 1 ds;(e,, ed) = 0 

we obtain 

ds; = dp’ + (-) P 2 P 2  d4’ 
P 2 + P 2  

(2.34) 

a metric ds$ on M from the 

(2.35) 

(2.36) 

Thus M is a Riemannian manifold with non-zero curvature (as can be checked) and 
infinite volume (since J J M  ( p 2 + p 2 ) - I ”  dp d 4  is infinite). In order to complete the 
geometric discussion we express the lifts ep and e+ with respect to the section (2.29). 
By operating on functions on P which are restricted to this section, i.e. f(r, 0, z )  = 
f ( p ,  0 +a, pa),  we can write the following: 

a a a u a  a a a  
-=- + - - + p - -  
ap a r  ap  a0 ap az 

a a a a a  a a a  - + - - + p - - - - .  
a4 a0  a4 ae a 4 a z  

(2.37) 

Using equations (2.32) (2.34) and (2.37) we can write the horizontal lifts in the form 

(2.38) 
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Having discussed the underlying geometry of the configuration space, we now 
return to th,e quantym mechanical problem. We require to transform the Hamiltonian 
operators H B  and H so that they operate on functions which are defined only on the 
base M of the principal fibre bundle. In equation (2.7’) we observe that the kinetic 
energy terms of the integrand constitute the inverse metric on P. This is a crucial 
observation when we write the following identity which represents the horizontal- 
vertical decomposition of the inverse metric: 

Here f l  and f i  are any functions of r, 0 and z and p = r, 4 = 8 - z /p .  (The decomposition 
(2.39) is the same as used in the dimensional reduction of Kaluza-Klein theories [ 9 ] . )  

In the boson-only case the constraint (2.8’) on the complex valued wavefunctions 
Gr can be written as 

E $ ,  = 0. (2.40) 

= GL,(p ,  4) = 

e,$, = W J a p  e,$l = w,/w (2.41) 

Using equations (2.39) (2.40) and (2.41) in equation (2.7‘), integrating over the fikres, 
as the integrand is constant on fibres, and changing to the variables p, 4, then H B  is 
given by 

This constraint is satisfied when I/Jl and JlZ are constant on fibres of P, i.e. 
&( r, 8 - z / p ) .  Operating on such GI, the horizontal lifts take the form 

( $ 1  I AB$2) = lox dp lo2n d4 2 r p P  

(2.42) 

The invariant volume element for dsL is pp(p’”’)-’”dp d4.  To obtain this we 
carry out the transformation 

$hi = [47T2(p’+p2)]-”4$,. (2.43) 

The transformed Hamiltonian can be written in the form 

( $ 1  9 f i B 4 2 )  = ( $ 1  9 A B ( c r 2 )  

(2.44) 

or alternatively 

kB=- fhM+Q (2.45) 

where A M  is the Laplacian on M for the metric dsL and f is given by 

4p’ - p2 

8 ( p 2 + p 2 ) 2 ’  
Q =  v+  (2.46) 

Thus by writing the boson Hamiltonian in terms of the natural geometry of the base 
M we obtain an extra operator ordering term to the potential. 
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For the boson-fermion case the constraint (2.20) on the C4-valued wavefunctions 
and 14~ can be written as 

This may be written in the equivalent form 

(2.47) 

(2.48) 

Hence, the complete solution to the constraint, defining the wavefunctions along the 
fibres of P, is 

(2.49) 

where U is the 2 x 2 identity matrix. We write the boson-fermion Hamiltonian in the form 

&b2) = lox r d r  lo2= dB dz9  

where the integrand is 

(2.50) 

(2.51) 

Then the constraint (2.49) implies that 9 is constant on fibres, i.e. 9 = 9 ( p ,  4 )  = 
9( r, e - Z I P ) .  Changing variables to p, 4 in equation (2.50) and integrating over the 
fibres we have 

(*I  I fi*d = lom dp jo2= d 4  2.rrpP$(P, 4 ) .  (2.52) 

Even though 9, subject to equation (2.49), is constant on fibres of P, terms which 
constitute 9, i.e. JI1, ILr  and H F ,  are not constant on fibres. Thus in order to write out 
9 ( p ,  4 )  of equation (2.52) in full we must use a section of the principal fibre bundle. 
We choose to use the family of sections given by equation (2.29). Thus using equations 
(2.29) (2.39) and (2.51), 9 ( p ,  4) ,  in equation (2.52), takes the form 

where 

(2.55) 
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Again, the volume element in equation (2.52) is replaced by the invariant volume 
element on M associated with d s k  by carrying out the transformation (2.43). Also 
using equation (2.38) for e r ) . ,  e(,.-'. and the constraint (2.47) for E -  in equations (2.52) 
and (2.53) the Hamiltonian can be written in the form 

(2.56) 

Here &E), &(,.-I are given by equation (2.32), 
equation (2.55), kLu) is given by 

is given by equation (2.46) and, with 

(2.57) 

For each U, the Hamiltonian fi'") gives the quantum mechanics of the boson-fermion 
model and is defined entirely on the base A4 of the principal fibre bundle. We make 
the following observations. First, the scalar potential V has become the same 
expression as for the boson-only model. Secondly, the fermion potential 6p)  contains 
an additional operator ordering term which we can interpret as the interaction of four 
fermions as the matrix in the second term in equation (2.57) can be written in the form 
(Cfa&Cfa,&. Thirdly, the components of the U(1) bundle connection, a:), A?:) 
appear in fi(=) due to the fermionic part of the constraint. We could interpret the 
terms of fi'") in which the connection components appear as resulting from the boson 
particle moving in M under the 'electromagnetic' field given by equation (2.33) but 
where the 'charge coupling' is fermionic. Fourthly, even though we have overall section 
independence, i.e. (&"', fi(')+y)) is independent of U, a(") does depend on U and 
there is no preferred choice for U. The section U plays the same role here as gauge 
fixing does in gauge field theory. Two convenient choices for the section are: 

( a )  the z = 0 plane: r = p, 0 = 4, z = 0 (i.e. U = 0); 

( b )  the y = 0 plane: I = p, e = 0, z = -p+  (i.e. U = - 4 ) .  
are not equal, as can be checked.) ( f i ( U = o l  and fi(U=-&) 

3. A general class of finite-dimensional gauge invariant models 

In this section we consider the generalisation of the models of the previous section, 
i.e. where the configuration space becomes a general principal fibre bundle. This is 
the case B referred to in the introduction. By taking this general viewpoint we will be 
able to identify the geometric nature of the operator ordering terms arising (which 
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was not possible for the models of the previous section due to their specific nature). 
First, we discuss relevant geometric features of the configuration space and then 
consider the generalisation of the Hamiltonian operators and constraint operators for 
the boson and boson-fermion models. 

We take the configuration space to be any connected manifold P on which a 
compact Lie group G acts freely from the right so as to give the structure of a principal 
fibre bundle [9, 131. The fibres of P are the orbits of G and by identifying points on 
fibres of P we obtain the base M of the principal fibre bundle. As we are interested 
only in local expressions for operator ordering terms we will work with local coordinates 
henceforth. Let a, x and U denote local coordinates of points in G, M and P, 
respectively. Moreover, as P is locally a product of M and G, we can change 
coordinates so that a point U on the fibre in P above x in M can be transformed to 
take the form (x, a). P is also equipped with a Riemannian metric ds$= k =  
k A B ( u )  duA duB, which is G-invariant. 

The Lie algebra of G, denoted %, we take to be spanned by {T,} satisfying 
[ T,, Tb] = C:,T, where c& are the structure constants of %. In rp the tangent space 
to P, there is a vertical subspace parallel to the fibres, denoted V, and spanned by { E , }  

where, for any function on P, E ,  is given by 

Because the G action on P is free, { E , }  is linearly independent. Moreover, we also have 

[ E a ,  E b l  = C&&c (3.2) 

from the properties of { T,}. Using { E , }  and ds$ we can define a metric on any fibre 
of P. Letting h o b  = k ( ~ , ,  E b ) ,  then on the fibre of P over x in M 

ds: = hab(x ,  a) d a "  dab .  (3.3) 

Using ds; we can define the horizontal subspace X of Tp as the orthogonal complement 
V. Thus we have the decomposition Tp = V O X  As d s i  is G-invariant, it follows 
that X defines a connection on the principal fibre bundle and with respect to this 
connection we can horizontally lift a / a d  to e, in X where {alax'} is a basis for the 
tangent space to M, FM. We can define a metric on M, dsL,  using the horizontal lifts 
{e,} by letting yl, = k ( e , ,  e,) and putting 

(3.4) ds& = y, , (x)  dx'  dx'. 

Letting {a /auA}  be a basis for Y p ,  then at the point U in P, on the fibre above x in M, 
we have the decomposition of the inverse metric with respect to V and X [ 9 ] :  

using { e i }  and { E , }  as bases for 2 and V. To obtain components of the connection 
we take local sections of the principal fibre bundle by writing (x, a = ( ~ ( x ) )  where U 
is a locally defined G-valued function on M. With respect to this section the horizontal 
lifts are given by 
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The three sets of functions {Y ,~ (x ) } ,  { o P ~ ’ ( x ) }  and {h$ , ’ (x )  = hob(x ,  (Y = a ( x ) ) }  com- 
pletely and uniquely characterise all G-invariant Riemannian metrics on a principal 
fibre bundle as can be inferred from equations (3.5) and (3.6). In considering the 
quantum mechanical models below we will express the operator ordering terms with 
respect to these three sets of functions. 

We now consider the quantum mechanics of the gauge invariant boson model with 
a configuration space which is the principal fibre bundle P. Because the metric on P, 
ds; , can have non-zero curvature, an operator ordering choice needs to be made for 
the Hamiltonian operator for a particle moving in P in a potential V. We choose as 
the generalisation of the boson Hamiltonian operator (2.7) the following natural 
geometric one: 

f i B = - i A k +  V (3.7) 

where A k  is the Laplacia? associated with the metric d s i  = k. The potential V is 
G-invariant, i.e. E ,  V = 0. HB operates on complex-valued functions and can be written 
in the form 

(3.8) 

The gauge invariance of the model manifests itself as the Gauss-law constraint on { I,!I~} 
which generalises to 

E,*[ = 0. (3.9) 

When the constraint (3.9) is applied to the integrand of equation (3.8) the term in 
parentheses is constant on fibres of P. Also by changing from local coordinates U to 
(x, a), it follows from the decomposition (3.5) that 

n d u m (  ) = 1 n d x m  fl d a J d e t  h ( x ,  a)( ). 
M 

By defining the hypervolume of the fibre of P above the point x in M by 

fl d a d d e t  h ( x ,  a) 

(3.10) 

(3.11) 

and using it in equation (3.8) together with the decomposition (3.5) and constraint 
(3.9) we have 

(3.12) 

We need to eliminate v ( x )  from the integrand of equation (3.12) to obtain the correct 
volume element on M and we can achieve this by letting 

*, = GI/ (3.13) 

This transforms the Hamiltonian operator AB to AB where 

( $ 1 ,  f i B 4 2 )  = ($> 9 

(3.14) 
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or alternatively 

fiB= -;A,+ Q (3.15) 

where A y  is the Laplacian operator associated with the metric d s h  and 

(3.16) 

Equations (3.11) and (3.16) identify the operator ordering terms which have been 
added to the potential of the boson model with respect to { y U }  and { h a b } .  

For the boson-fermion Hamiltonian operator we add a fermion part fiF to fi, 
given by equation (3.7), i.e. 

f i = - i A k +  v + f i F .  (3.17) 

fi,, which must be gauge invariant, is constructed in the manner now described. We 
suppose that we have a Clifford algebra generated by { I , ,  Z 2 , .  . . , I N } ,  i.e. that 

Z,( + 41, = 6,, 1: = I , .  (3.18) 

We also suppose that the Lie algebra, 3, is represented on this Clifford algebra, i.e. a 
generator T, is represented by r,, where (see [14]) 

r, =fir:[ 1,, I,] (3.19) 

and r: is real and antisymmetric in i, j and such that 

[ro, r,] = iCZbrc. (3.20) 

(For the three-dimensional model of section 2 th,e one generator is represented by 
r = $i([ 1 2 ,  14] - [ I , ,  1 3 ] ) . )  The gauge invariance of HF is expressed by 

1. 

[ E ,  - ir,, HF] = 0. (3.21) 

Thus, if in generalising equation (2.15) we take 

f i F = i W ~ ( U ) [ z ~ ,  41 (3.22) 

where w,,( U )  is real valued and antisymmetric in i and j ,  then equation (3.21) requires 
that 

&awj, = r ikwkl  -r$wk,. (3.23) 

(From equation (2.15) fiF=$p{x([12, lJ+[I , ,  141)+y([12, ll]+[Z4, 41)) for the three- 
dimensional model of section 2.) fi can be written in the alternative form 

(3.24) 

where 

(3.25) 
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and +; are multicomponent complex-valued functions. The Gauss-law constraint 
generalising equation (2.20) is 

( E ,  -ir,)+i = O .  (3.26) 

The solution to this equation defines the behaviour of $; along the fibres of P. Moreover, 
it then follows that 4 is constant on fibres of P. Thus we can again use equations 
(3.10) and ( 3 . 1 1 )  to write equation (3.24) as 

(3.27) 

Because the terms which consistute 4, i.e. +; and AF, are not constant on fibres of P, 
in order to write out 4 in full we choose a local section (x, (Y = a (x ) )  on P. Using this 
and equation (3 .5)  we have 

(3.28) 

and 

$l")(x) = $'(X, (Y = a(x) ) .  

Using the substitution (3.13) to obtain the correct volume element fords$ in equation 
(3.27) and using equation (3.6) for elu)$&) and the constraint (3.26) for E,$&) in 
equation (3.28), the Hamiltonian becomes 

( A$,) = (lp), f i q y ' )  

+ @ y q ; u ) +  &UP (3.29) 

is given by equation (3.16) and the operator 

fip) = IjLr)++h(r),",r,. (3.30) 

All terms in as given by equations (3.16), (3.29) and (3.30) other than V and 
&-) are expressed with respect to the bundle connection d~"'", the metric on M, 
ds$ = y, and the fibre metric, ds: = h, which uniquely characterise the G-invariant 
metric on P, ds: = k. 

Here, the operator ordered potential 
ordered fermionic potential fip) is given by 

4. Concluding remarks 

We have considered classes of constrained finite-dimensional quantum models of 
bosons and fermions where the configuration space has the structure of a principal 
fibre bundle and on which there is defined a metric invariant under the group action. 
This geometrical structure is similar to that present in a gauge invariant field theory 
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but without the added complications of infinite dimensionality (i.e. renormalisation 
and overall Lorentz covariance). For the metric on the principal fibre bundle we firstly 
took the Euclidean metric (case A) in section 2 (this situation is most similar to gauge 
field theory) and secondly we have considered the case of a general metric (case B) 
in section 3 .  

In concluding, we make the following points. 
(i) The reduced boson Hamiltonian operator, 8, (i.e. as defined on the base of 

the principle fibre bundle) is given for case A by equations (2.45) and (2.46) and for 
case B by equations (3.15) and (3.16). 8, consists of -5  times the natural Laplacian 
on the base plus a modified potential. 

(ii) The reduced boson-fermion Hamiltonian operator, 8(‘) is given for case A by 
equations (2.32), (2.46), (2.55), (2.56) and (2.57) and for case B by equations (3.16), 
(3.29) and (3.30). consists o f  ( a )  - 4  times the natural Laplacian on the base; 
the Laplacian now is modified by being minimally coupled to the fermion fields through 
the connection induced from the group action and the invariant metric; ( b )  a modified 
potential as for 8,; and (c)  a fermionic potential, modified by the addition of a 
four-fermion interaction term. There is an added complication in writing out fi(‘) as 
compared with 8, because local sections U are needed (even though there is overall 
u-independence). The role of U here is the same as that of gauge fixing in field theory. 

(iii) We have used the vertical-horizontal decomposition of the tangent space to 
the principal fibre bundle (resulting from the group action and the invariant metric) 
to remove the redundant degrees of freedom from the constrained system and obtain 
a Hamiltonian operator (containing operator order terms) on the base of the principle 
fibre bundle. The general metric case was considered in section 3 and in equations 
(3 .11) ,  (3.16), (3.29) and (3.30) the operator ordering terms are expressed in terms of 
{.d8j‘)a, h z ’ ,  rv} .  This set of functions uniquely characterises the original group 
invariant metric k on the principal fibre bundle (see [9] and references therein). This 
characterisation is the same as occurs in the dimensional reduction of Kaluza-Klein 
theories (there {.d!‘)(l} would be the set of gauge potentials, {-yU} would define the 
metric on spacetime and { h z ) }  would constitute the set of Brans-Dicke scalar fields 
[9,11]. Furthermore, the characterisation in terms of h z ’ ,  ru} obviates the 
need to express the operator ordering terms in other ways (i.e. in terms of the curvatures 
of the principal fibre bundle or the base or the geometry of the embedding of the 
orbits, etc, and which was the approach taken in [8]). 

The gauge invariant quantum models that we have dealt with in this paper have 
been finite dimensional. This was done in order to be able to present the geometry of 
the operator ordering terms in a clear way without the additional difficulties of 
regularising the divergences of a field theory. However, it is in the infinite-dimensional 
case, i.e. a field theory, where gauge invariance occurs in practice. Thus, we address 
our final remarks on how the results of the paper can be extended for gauge invariant 
field theory. For this case, the expressions derived above for the operator ordering 
terms are true only in a formal sense due to the presence of many divergent factors. 
(A full discussion of the divergences that arise in a gauge invariant field theory from 
the geometric point of view is given in [3].) In order to resolve the divergence problem, 
two methods are available. The first method is to consider lattice gauge theory and 
take the continuum limit, as in [8]. The second method consists of the introduction 
of a space-volume cut-off and a gauge covariant continuum ultraviolet cut-off and to 
construct the Feynman-Kac integral for a gauge invariant field theory through a suitable 
Brownian motion on the space of gauge group orbits [3,15]. 
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